Teknik Mesin

Wednesday 24 June 2020

PENGERTIAN TURBO

Turbo atau juga biasa dikenal dengan turbocharger adalah sebuah komponen tambahan motor bakar yang berfungsi untuk menambah jumlah udara yang masuk ke dalam ruang bakar, dengan memanfaatkan energi panas yang terkandung di dalam gas buang mesin. Gas buang yang masih mengandung energi panas dilewatkan ke sebuah turbin untuk mengubah energi panas tersebut menjadi energi mekanis putaran poros. Sebuah kompresor yang berada satu poros dengan turbin, memanfaatkan energi mekanik tadi untuk men-supply lebih banyak udara ke dalam ruang bakar. Jika pada satu siklus motor bakar udara yang dimasukkan ke dalam ruang bakar lebih banyak kuantitasnya, maka dimungkinkan juga dalam satu siklus tersebut, bahan bakar yang dimasukan ke dalam ruang bakar juga menjadi lebih banyak.



Pada kondisi normal motor bakar torak, udara masuk ke dalam ruang bakar adalah akibat dari gerakan hisap dari torak. Gerakan hisap torak akan menciptakan tekanan negatif di dalam ruang bakar, yang jika diikuti dengan terbukanya katup manifold, maka udara dalam jumlah tertentu akan masuk ke dalam ruang bakar karena tekanan udara masuk (atmosfer) lebih besar daripada tekanan di dalam ruang bakar. Dan karena putaran siklus motor bakar bekerja dengan sangat cepat, maka udara yang masuk ke ruang bakar pada saat siklus hisap berjumlah relatif sedikit. Jumlah udara yang relatif sedikit ini akan diikuti pula dengan sedikitnya jumlah bahan bakar yang masuk sesuai dengan setting sistem pencampuran bahan bakar di ruang bakar (karburator maupun injeksi). Dengan kondisi ini, daya mesin yang dihasilkanpun relatif rendah pula.

Penggunaan turbocharger akan meningkatkan daya keluaran motor bakar. Karena kompresor dari turbo akan meningkatkan tekanan dan kuantitas udara yang masuk ke ruang bakar pada saat siklus hisap. Secara otomatis, kuantitas campuran udara dan bahan bakar yang masuk ke dalam ruang bakar pada satu siklus motor akan lebih banyak. Kuantitas campuran bahan bakar dan udara yang lebih banyak inilah yang menghasilkan daya total siklus menjadi lebih besar daripada mesin konvensional yang tidak menggunakan turbo.


PENGERTIAN KOMPRESOR DAN MACAMNYA

Kompresor adalah mesin atau alat mekanik yang berfungsi untuk meningkatkan tekanan atau memampatkan fluida gas atau udara. Kompresor biasanya menggunakan motor listrik, mesin diesel atau mesin bensin sebagai tenaga penggeraknya. Udara bertekanan hasil dari kompresor biasanya diaplikasikan atau digunakan pada pengecatan dengan teknik spray/ air brush, untuk mengisi angin ban, pembersihan, pneumatik, gerinda udara (air gerinder) dan lain sebagainya.

Prinsip kerja kompresor dapat dilihat mirip dengan paru-paru manusia. Misalnya ketika seorang mengambil napas dalam – dalam untuk meniup api lilin, maka ia akan meningkatkan tekanan udara di dalam paru-paru, sehingga menghasilkan udara bertekanan yang kemudian digunakan atau dihembuskan untuk meniup api lilin tersebut.

Jenis – jenis kompresor
Secara umum kompresor dibedakan menjadi dua jenis yaitu kompresor dinamis dan kompresor perpindahan positif.

1. Kompresor perpindahan positif
Kompresor perpindahan positif dibedakan menjadi 2 jenis, yaitu kompresor piston (reciprocating compressor) dan kompresor putar (rotary).
• Kompresor piston/torak (Reciprocating)
1) Kompresor piston kerja tunggal
Kopresor piston kerja tunggal adalah kompresor yang memanfaatkan perpindahan piston, kompresor jenis ini menggunakan piston yang didorong oleh poros engkol (crankshaft) untuk memampatkan udara/ gas. Udara akan masuk ke silinder kompresi ketika piston bergerak pada posisi awal dan udara akan keluar saat piston/torak bergerak pada posisi akhir/depan.


2) Kompresor piston kerja ganda
Kompresor piston kerja ganda beroperasi sama persis dengan kerja tunggal, hanya saja yang menjadi perbedaan adalah pada kompresor kerja ganda, silinder kompresi memiliki port inlet dan outlet pada kedua sisinya. Sehingga meningkatkan kinerja kompresor dan menghasilkan udara bertekanan yang lebih tinggi dari pada kerja tunggal.


3) Kompresor diafragma
Kompresor diafragma adalah jenis klasik dari kompresor piston, dan mempunyai kesamaan dengan kompresor piston, hanya yang membedakan adalah, jika pada kompresor piston menggunakan piston untuk memampatkan udara, pada kompresor diafragma menggunakan membran fleksible atau difragma.


• Kompresor putar (Rotary)
1) Kompresor screw (Rotary screw compressor)
Kompresor screw merupakan jenis kompresor dengan mekanisme putar perpindahan positif, yang umumnya digunakan untuk mengganti kompresor piston, bila diperlukan udara bertekanan tinggi dengan volume yang lebih besar.


2) Lobe
3) Vane
4) Liquid Ring
5) Scroll

2. Kompresor dinamis
Kompresor dinamis dibedakan menjadi 2 jenis, yaitu kompresor sentrifugal dan kompresor aksial.
• Kompresor sentrifugal
Kompresor sentrifugal merupakan kompresor yang memanfaatkan gaya sentrifugal yang dihasilkan oleh impeller untuk mempercepat aliran fluida udara (gaya kinetik), yang kemudian diubah menjadi peningkatan potensi tekanan (menjadi gaya tekan) dengan memperlambat aliran melalui diffuser.


• Kompresor aksial
Kompresor aksial adalah kompresor yang berputar dinamis yang menggunakan serangkaian kipas airfoil untuk semakin menekan aliran fluida. Aliran udara yang masuk akan mengalir keluar dengan cepat tanpa perlu dilemparkan ke samping seperti yang dilakukan kompresor sentrifugal. Kompresor aksial secara luas digunakan dalam turbin gas/udara seperti mesin jet, mesin kapal kecepatan tinggi, dan pembangkit listrik skala kecil.


PENGERTIAN PNEUMATIC

Pneumatik merupakan teori atau pengetahuan tentang udara yang bergerak, keadaan-keadaan keseimbangan udara dan syarat-syarat keseimbang-an. Orang pertama yang dikenal dengan pasti telah menggunakan alat pneumatik adalah orang Yunani bernama Ktesibio. Dengan demikian istilah pneumatik berasal dari Yunani kuno yaitu pneuma yang artinya hembusan (tiupan). Bahkan dari ilmu filsafat atau secara philosophi istilah pneuma dapat diartikan sebagai nyawa. Dengan kata lain pneumatik berarti mempelajari tentang gerakan angin (udara) yang dapat dimanfaatkan untuk menghasilkan tenaga dan kecepatan.

Gambar 1. Pneumatic Syrcuit

Pneumatik merupakan cabang teoritis aliran atau mekanika fluida dan tidak hanya meliputi penelitian aliran-aliran udara melalui suatu sistem saluran, yang terdiri atas pipa-pipa, selang-selang, gawai (device) dan sebagainya, tetapi juga aksi dan penggunaan udara mampat. Udara yang dimampatkan adalah udara yang diambil dari udara lingkungan yang kemudian ditiupkan secara paksa ke dalam tempat yang ukurannya relatif kecil.

Pneumatik dalam pelaksanaan teknik udara mampat dalam industri (khususnya dalam teknik mesin) merupakan ilmu pengetahuan dari semua proses mekanis dimana udara memindahkan suatu gaya atau suatu gerakan. Dalam pengertian yang lebih sempit pneumatik dapat diartikan sebagai teknik udara mampat (compressed air technology). Sedangkan dalam pengertian teknik pneumatik meliputi : alat-alat penggerakan, pengukuran, pengaturan, pengendalian, penghubungan dan perentangan yang meminjam gaya dan penggeraknya dari udara mampat. Dalam penggunaan sistem pneumatik semuanya menggunakan udara sebagai fluida kerja dalam arti udara mampat sebagai pendukung, pengangkut, dan pemberi tenaga.

Gambar 2. Pneumatik System

Adapun ciri-ciri dari para perangkat sistem pneumatik yang tidak dipunyai oleh sistem alat yang lain, adalah sebagai berikut :

  1. Sistem pengempaan, yaitu udara disedot atau diisap dari atmosphere kemudian dimampatkan (dikompresi) sampai batas tekanan kerja tertentu (sesuai dengan yang diinginkan). Dimana selama terjadinya kompresi ini suhu udara menjadi naik.
  2. Pendinginan dan penyimpanan, yaitu udara hasil kempaan yang naik suhunya harus didinginkan dan disimpan dalam keadaan bertekanan sampai ke obyek yang diperlukan.
  3. Ekspansi (pengembangan), yaitu udara diperbolehkan untuk berekspansi dan melakukan kerja ketika diperlukan.
  4. Pembuangan, yaitu udara hasil ekspansi kemudian dibebaskan lagi ke atmosphere (dibuang).

Semua sistem yang menggunakan tenaga yang disimpan dalam bentuk udara yang dimampatkan untuk menghasilkan suatu kerja disebut dengan sistem pneumatik. Dalam penerapannya, sistem pneumatik banyak digunakan sebagai sistem automasi.Dalam kaitannya dengan bidang kontrol, pemakaian sistem pneumatik sampai saat ini dapat dijumpai pada berbagai industriseperti pertambangan, perkeretaapian, konstruksi, manufacturing, robot dan lain-lain. Tenaga fluida adalah istilah yang mencakup pembangkitan, kendali dan aplikasi dari fluida bertekanan yang digunakan untuk memberikan gerak.

Berdasarkan fluida yang digunakan tenaga fluida dibagi menjadi pneumatik, yang menggunakan udara serta hidrolik yang menggunakan cairan. Dasar dari aktuator tenaga fluida adalah bahwa fluida mempunyai tekanan yang sama ke segala arah. Pada dasarnya sistem pneumatik dan hidrolik tidaklah jauh berbeda. Pembeda utama keduanya adalah sifat fluida kerja yang digunakan. Cairan adalah fluida yang tidak dapat ditekan (incompresible fluid)sedangkan udara adalah fluida yang dapat terkompresi(compressible fluid).

Pada umumnya pneumtik menggunakan aliran udara yang terjadi karena perbedaaan tekanan udara pada suatu tempat ke tempat lainnya. Untuk keperluan industri, aliran udara diperoleh dengan memampatkan udara atmosfer sampai tekanan tertentu dengan kompressor pada suatu tabung dan menyalurkannya kembali ke udara bebas. Jenis kompressor terdiri dari dua kelompok antara lain :

  1. Kompressor torak yang bekerja dengan prinsip pemindahan yaitu udara dimampatkan dengan mengisikannya ke dalam suatu ruangan kemudian mengurangi sis pada ruangan tersebut.
  2. Kompressor aliran yang bekerja dengan prinsip aliran udara yaitu dengan menyedot udara masuk ke dalam pada satu sisi dan memampatkannya dengan percepatan massa (turbin). Kompressor aliran meliputi kompressor aliran radial dan kompressor aliran aksial.

Udara sebagai fluida kerja pada sistem pneumatik memilik karakteristik khusus antara lain :

  1. Jumlah udara tidak terbatas
  2. Transfer udara relatif mudah dilakukan
  3. Dapat dimampatkan
  4. Mencari tekanan yang lebih rendah
  5. Memberi tekanan yang sama ke segala arah
  6. Tidak mempunyai bentuk tetap (selalu menyesuaikan dengan bentuk yang ditempatinya)
  7. Mengandung kadar air
  8.  Tidak sensitive terhadap suhu
  9. Tahan ledakan
  10. Kebersihan
  11. Kesederhanaan konstruksi
  12. Kecepatan
  13. Keamanan

Wednesday 26 September 2012

MOTOR BAKAR


1. Pengertian Motor Bakar
Motor bakar adalah motor penggerak mula yang pada prinsipnya adalah sebuah alat yang mengubah energi kimia menjadi energi panas dan diubah ke energi mekanis. Saat ini motor bakar masih menjadi pilihan utama untuk dijadikan sebagai penggerak mula. Karena itu, usaha untuk menciptakan motor bakar yang menghasilkan kemampuan tinggi terus diusahakan oleh manusia.
Kemampuan tinggi untuk mesin ditandai dengan adanya daya dan torsi yang dihasilkan tinggi tetapi kebutuhan bahan bakar rendah.

          1.1 Motor Bakar ditinjau dari prinsip perolehan energi kalor

          Motor Bakar ditinjau dari prinsip perolehan energi kalor dibagi menjadi 2 dua macam yaitu, :
a.   Motor pembakaran dalam (Internal Combustion Engine)
      Di dalam motor bakar terdapat tenaga panas bahan bakar yang diubah menjadi tenaga mekanik, sehingga dalam hal ini merupakan proses pembakaran dalam  mesin, di mana zat arang dan zat cair bergabung dengan zat asam dalam udara, jika pembakaran berlangsung maka diperlukan :
        -Bahan bakar dan udara dimasukkan ke dalam motor
        -Bahan bakar dipanaskan hingga suhu nyala
Pembakaran ini menimbulkan panas yang mengahasilkan tekanan yang kemudian menghasilkan tenaga mekanik. Contoh aplikasi dari pembakaran dalam ini digunakan pada power rendah, misalnya motor bensin dan motor diesel.

b.      Motor pembakaran luar (External Combustion Engine).
      Merupakan pembakaran yang terjadi di luar sistem (silinder) dan biasa digunakan pada power tinggi, yaitu misalnya pada ketel uap, turbin uap, mesin uap, dll. Pada mesin uap dan turbin uap, bahan bakar dibakar di ruang pembakaran tersendiri dengan ketel untuk menghasilkan uap. Jadi mesinnya tidak digerakkan oleh gas yang terbakar tetapi oleh uap air. Untuk membuat uap air maka bahan bakar yang dipergunakan dapat berupa batubara atau kayu  dan pembakarannya dilakukan secara terus-menerus. Lagi pula uap tidak dipanasi langsung oleh nyala api, tetapi dengan perantaraan dinding ruang pembakaran, maka dari itu tidak mungkin memanasi uap sampai suhu yang tinggi dan efisiensi thermisnya agak rendah. Secara singkat, mesin uap dan turbin uap mempunyai karakter yang hanya dapat dipergunakan sebagai penggerak mula ukuran besar, misalnya lokomotip, kapal, dan power plant dan tidak baik dipergunakan sebagai penggerak generator serbaguna, sepeda motor, kendaraan (mobil),dll. Jadi pembakaran luar mesin (externalcombustion engine), pembakaran terjadi di luar system yaitu mengubah energi potensial uap menjadi energi kinetic dan selanjutnya energi kinetic diubah menjadi energi mekanis dalam bentuk putaran (pada instalasi uap, tenaga thermis dalam bahan bakar, pertama-tama dipergunakan untuk membuat uap dalam kawah uap, untuk itu mesin uap disebut juga pesawat kalor dengan pembakaran luar).


1.2 Motor Bakar ditinjau dariprinsip kerjanya
Motor Bakar ditinjau dari prinsip kerjanya dibagi menjadi dua macam, yaitu:
a.       Motor 2 tak (2 Langkah) 
      Motor 2 tak (2 langkah) dibedakan menjadi 2 yaitu untuk motor bensin dan diesel. Prinsip kerjanya hampir sama, yakni melalui 2 langkah yaitu  langkah kompresi dan langkah usaha. Dalam melakukan usahanya memerlukan satu kali putaran poros engkol untuk 2 kali langkah torak. Langkah pertama, yaitu merupakan langkah kompresi , dengan torak bergerak ke atas, campuran minyak bahan bakar dan udara dikompresikan dan dibakar dengan bunga api listrik bila torak mencapai titik mati atas (TMA). Kevakuman di dalam lemari engkol akan timbul dan campuran minyak bakar maka udara masuk. Langkah kedua yaitu merupakan langkah usaha, torak didorong ke bawah oleh tekanan pembakaran, campuran minyak bakar, udara di dalam lemari engkol dikompresikan bila torak menutup lubang pemasukan.


b.      Motor 4 tak (4 Langkah)
      Motor 4 tak (4 langkah) dibedakan menjadi 2 yaitu untuk motor bensin dan diesel. Prinsip kerjanya hampir sama, yakni melalui 4 langkah yaitu  langkah pemasukan,kompresi,usaha, dan langkah pembuangan. Dalam melakukan usahanya memerlukan dua kali putaran poros engkol untuk 4 kali langkah torak. Langkah pertama yaitu langkah pemasukan, torak bergerak ke bawah, katup masuk membuka, katup buang tertutup, terjadilah kevacuman pada waktu torak bergerak ke bawah, campuran bahan bakar udara mengalir  ke dalam silinder melalui lubang katup masuk, campuran bahan bakar udara datang dari karbuarator. Kemudian, apabila torak berada di titik mati bawah, katup masuk tertutup dan torak bergerak ke atas, katup buang tertutup waktu torak bergerak ke atas. Campuran bahan bakar udara dikompresikan dan bilamana torak telah mencapai titik mati atas campuran dikompresikan sekitar seperdelapan isinya (langkah kompresi). Bilamana torak telah mencapai titik mati atas campuran minyak bakar udara dibakar dengan bunga api (dari busi), sehingga mengakibatkan tekanan naik hingga mencapai 30-40 kg/cm2 dan torak didorong ke bawah (langkah usaha). Untuk selanjutnya,yaitu langkah pembuangan, dimana, gas bekas dikeluarkan dari dalam silinder, pembuangan gas berlangsung selama langkah buang (torak bergerak ke atas dan katup buang terbuka).


1.3 Motor Bakar ditinjau daribahan bakar yang digunakan
                 Motor Bakar ditinjau dari bahan bakar yang digunakan, dibedakan menjadi dua macam, 
 yaitu :
a.       Motor bakar bensin
      Yaitu motor bakar yang menggunakan bahan bakar bensin, parafin atau gas (bahan yang mudah terbakar dan mudah menguap). Campuran udara dan bahan bakar  masuk ke dalam silinder dan dikompresikan oleh torak kepada tekanan sekitar 8-15 kg/cm2. Bahan bakar dinyalakan oleh sebuah loncatan bunga api listrik oleh busi dan terbakar cepat sekali di dalam udara kompresi tersebut. Kecepatan pembakaran melalui campuran bahan bakar udara biasanya 10 sampai 25 m/s. Suhu udara naik hingga 2000°-2500° C dan tekanannya mencapai 30-40 kg/m2.

                                        
b.      Motor bakar solar (diesel)
            Yaitu motor bakar yang menggunakan bahan bakar yang lebih berat yakni minyak diesel (solar) Proses pembakaran motor diesel berbeda prosesnya dengan proses pembakaran motor bensin, pada motor diesel diawali dengan udara bersih masuk melalui lngkah isap, kemudian bahan bakar dimasukan pada silinder setelah udara dulu dimampatkan oleh piston. Setelah itu bahan bakar solar yang sudah berbentuk kabut diinjeksikan oleh injektor pada ruang silinder. Karena kabut bahan bakar mudah terbakar, maka pada ruang bakar terjadi pembakaran (dan dikompresikan oleh torak, tekanan naik hingga 30-50 kg/cm2, suhu udara naik hingga 700°-900o C, suhu udara kompresi terletak  di atas suhu udara penyala bahan bakar. Bahan bakar disemprotkan ke dalam udara kompresi yang panas kemudian terbakar, tekanan naik sehingga mencapai 70-90 kg/cm2. Dan perlu diperhatikan bahwa dalam motor bakar diesel tidak menggunakan busi sebagai penyala bunga api.


Tuesday 25 September 2012

Pengertian dan Klasifikasi pada Pompa


Pengertian Pompa

Pompa adalah jenis mesin fluida yang digunakan untuk memindahkan fluida melalui pipa dari satu tempat ke tempat lain. Dalam menjalankan fungsinya tersebut, pompa mengubah energi gerak poros untuk nggerakkan sudu-sudu menjadi energi tekanan pada fluida.
Klasifikasi Pompa
Menurut prinsip perubahan bentuk energi yang terjadi, pompa dibedakan menjadi :

1. Positive Displacement Pump
Disebut juga dengan pompa aksi positif. Energi mekanik dari putaran poros pompa dirubah menjadi energi tekanan untuk memompakan fluida. Pada pompa jenis ini dihasilkan head yang tinggi tetapi kapasitas yang dihasilkan rendah. Yang termasuk enis pompa ini adalah :
a.    Pomparotary

Sebagai ganti pelewatan cairan pompa sentrifugal, pompa rotari akan merangkap cairan, mendorongnya melalui rumah pompa yang tertutup. Hampir sama dengan piston pompa torak akan tetapi tidak seperti pompa torak (piston), pompa rotari mengeluarkan cairan dengan aliran yang lancar (smooth).

Macam-macam pompa rotary :

·         Pomparoda gigi luar

Pompa ini merupakan jenis pompa rotari yang paling sederhana. Apabila gerigi roda gigi berpisah pada sisi hisap, cairan akan mengisi ruangan yang ada diantara gerigi tersebut. Kemudian cairan ini akan dibawa berkeliling dan ditekan keluar apabila giginya bersatu lagi


·         Pomparoda gigi dalam

Jenis ini mempunyai rotor yang mempunyai gerigi dalam yang berpasangan dengan roda gigi kecil dengan penggigian luar yang bebas (idler). Sebuah sekat yang berbentuk bulan sabit dapat digunakan untuk mencegah cairan kembali ke sisi hisap pompa.


·         Pompacuping (lobe pump)

Pompa cuping ini mirip dengan pompa jenis roda gigi dalam hal aksinya dan mempunyai 2 rotor atau lebih dengan 2,3,4 cuping atau lebih pada masing-masing rotor. Putaran rotor tadi diserempakkan oleh roda gigi luarnya.


·         Pompasekrup (screw pump)
Pompa ini mempunyai 1,2 atau 3 sekrup yang berputar di dalam rumah pompa yang diam. Pompa sekrup tunggal mempunyai rotor spiral yang erputar di dalam sebuah stator atau lapisan heliks dalam (internal helix stator). Pompa 2 sekrup atau 3 sekrup masing-masing mempunyai satu atau dua sekrup bebas (idler).


·         Pompa baling geser (vane Pump)
Pompa ini menggunakan baling-baling yang dipertahankan tetap menekan lubang rumah pompa oleh gaya sentrifugal bila rotor diputar. Cairan yang terjebak diantara 2 baling dibawa berputar dan dipaksa keluar dari sisi buang  pompa.


b.      Pompa Torak (Piston)

Pompa torak mengeluarkan cairan dalam jumlah yang terbatas selama pergerakan piston sepanjang langkahnya. Volume cairan yang dipindahkan selama 1 langkah piston akan sama dengan perkalian luas piston dengan panjang langkah. Macam-macam pompa torak :
• Menurut cara kerja

·         Pompatorak kerja tunggal

·         Pompatorak kerja ganda


• Menurut jumlah silinder :

·         Pompatorak silinder tunggal

·          Pompa torak silinder ganda


2. Dynamic Pump /Sentrifugal Pump
Merupakan suatu pompa yang memiliki elemen utama sebuah motor dengan sudu impeler berputar dengan kecepatan tinggi. Fluida masuk dipercepat oleh impeler yang menaikkan kecepatan fluida maupun tekanannya dan melemparkan keluar volut. Prosesnya yaitu :
Ø  Antara sudu impeller dan fluida Energi mekanis alat penggerak diubah menjadi  nergi kinetik fluida.
Ø  Pada Volut Fluida diarahkan kepipa tekan (buang), sebagian energi kinetik fluida diubah menjadi energi tekan.

Yang tergolong jenis pompa ini adalah :

a.    Pomparadial.
Fluida diisap pompa melalui sisi isap adalah akibat berputarnya impeler yang menghasilkan tekanan vakum pada sisi isap. Selanjutnya fluida yang telah terisap terlempar keluar impeler akibat gaya sentrifugal yang dimiliki oleh fluida itu sendiri. Dan selanjutnya ditampung oleh casing (rumah pompa) sebelum dibuang kesisi buang. Dalam hal ini ditinjau dari perubahan energi yang terjadi, yaitu : energi mekanis poros pompa diteruskan kesudu-sudu impeler, kemudian sudu tersebut memberikan gaya kinetik pada fluida.
Akibat gaya sentrifugal yang besar, fluida terlempar keluar mengisi rumah pompa dan didalam rumah pompa inilah energi kinetik fluida sebagian besar diubah menjadi energi tekan. Arah fluida masuk kedalam pompa sentrifugal dalam arah aksial dan keluar pompa dalam arah radial. Pompa sentrifugal biasanya diproduksi untuk memenuhi kebutuhan head medium sampai tinggi dengan kapasitas aliran yang medium. Dalam aplikasinya pompa sentrifugal banyak digunakan untuk kebutuhan proses pengisian ketel dan pompa-pompa rumah tangga.



b.    Pompa Aksial (Propeller)
Berputarnya impeler akan menghisap fluida yang dipompa dan menekannya kesisi tekan dalam arah aksial karena tolakan impeler. Pompa aksial biasanya diproduksi untuk memenuhi kebutuhan head rendah dengan  apasitas aliran yang besar. Dalam aplikasinya pompa aksial banyak digunakan untuk keperluan pengairan.



c.    PompaMixed Flow (Aliran campur)
Head yang dihasilkan pada pompa jenis ini sebagian adalah disebabkan oleh gaya sentrifugal dan sebagian lagi oleh tolakan impeler. Aliran buangnya sebagian radial dan sebagian lagi aksial, inilah sebabnya jenis pompa ini disebut pompa aliran campur.